Current Issue : July - September Volume : 2021 Issue Number : 3 Articles : 5 Articles
Blockchain, which has a distributed structure, has been widely used inmany areas. Especially in the area of smart cities, blockchain technology shows great potential. The security issues of blockchain affect the construction of smart cities to varying degrees. With the rapid development of quantum computation, elliptic curves cryptosystems used in blockchain are not secure enough. This paper presents a blockchain system based on lattice cipher, which can resist the attack of quantum computation. The most challenge is that the size of public keys and signatures used by lattice cryptosystems is typically very large. As a result, each block in a blockchain can only accommodate a small number of transactions. It will affect the running speed and performance of the blockchain...............
Nowadays, an Internet of Things (IoT) device consists of algorithms, datasets, and models. Due to good performance of deep learning methods, many devices integrated well-trained models in them. IoT empowers users to communicate and control physical devices to achieve vital information. However, these models are vulnerable to adversarial attacks, which largely bring potential risks to the normal application of deep learning methods. For instance, very little changes even one point in the IoT timeseries data could lead to unreliable or wrong decisions. Moreover, these changes could be deliberately generated by following an adversarial attack strategy...................
Since its inception, Bitcoin has been subject to numerous thefts due to its enormous economic value. Hackers steal Bitcoin wallet keys to transfer Bitcoin from compromised users, causing huge economic losses to victims. To address the security threat of Bitcoin theft, supervised learning methods were used in this study to detect and provide warnings about Bitcoin theft events. To overcome the shortcomings of the existing work, more comprehensive features of Bitcoin transaction data were extracted, the unbalanced dataset was equalized, and five supervised methods—the k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), adaptive boosting (AdaBoost), and multi-layer perceptron (MLP) techniques—as well as three unsupervised methods—the local outlier factor (LOF), one-class support vector machine (OCSVM), and Mahalanobis distance-based approach (MDB)—were used for detection........
Due to the increasing variety of encryption protocols and services in the network, the characteristics of the application are very different under different protocols. However, there are very few existing studies on encrypted application classification considering the type of encryption protocols. In order to achieve the refined classification of encrypted applications, this paper proposes an Encrypted Two-Label Classification using CNN (ETCC) method, which can identify both the protocols and the applications............
With virtual assistants, both changes and serious conveniences are provided in human life. For this reason, the use of virtual assistants is increasing. The virtual assistant software has started to be produced as separate devices as well as working on phones, tablets, and computer systems. Google Home is one of these devices. Google Home can work integrated with smart home systems and various Internet of Things devices. The security of these systems is an important issue. As a result of attackers taking over these systems, very serious problems may occur. It is very important to take the necessary actions to detect these problems and to take the necessary measures to prevent possible attacks.........
Loading....